Learning gradients via an early stopping gradient descent method

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Early Stopping in Gradient Descent Learning

In this paper, we study a family of gradient descent algorithms to approximate the regression function from Reproducing Kernel Hilbert Spaces (RKHSs), the family being characterized by a polynomial decreasing rate of step sizes (or learning rate). By solving a bias-variance trade-off we obtain an early stopping rule and some probabilistic upper bounds for the convergence of the algorithms. Thes...

متن کامل

On Early Stopping in Gradient Descent Boosting

In this paper, we study a family of gradient descent algorithms to approximate the regression function from reproducing kernel Hilbert spaces. Here early stopping plays a role of regularization, where given a finite sample and some regularity condition on the regression function, a stopping rule is given and some probabilistic upper bounds are obtained for the distance between the function iter...

متن کامل

Learning ReLUs via Gradient Descent

In this paper we study the problem of learning Rectified Linear Units (ReLUs) which are functions of the form x ↦ max(0, ⟨w,x⟩) with w ∈ R denoting the weight vector. We study this problem in the high-dimensional regime where the number of observations are fewer than the dimension of the weight vector. We assume that the weight vector belongs to some closed set (convex or nonconvex) which captu...

متن کامل

Learning via Gradient Descent in Sigma

Integrating a gradient-descent learning mechanism at the core of the graphical models upon which the Sigma cognitive architecture/system is built yields learning behaviors that span important forms of both procedural learning (e.g., action and reinforcement learning) and declarative learning (e.g., supervised and unsupervised concept formation), plus several additional forms of learning (e.g., ...

متن کامل

VAE Learning via Stein Variational Gradient Descent

A new method for learning variational autoencoders (VAEs) is developed, based on Stein variational gradient descent. A key advantage of this approach is that one need not make parametric assumptions about the form of the encoder distribution. Performance is further enhanced by integrating the proposed encoder with importance sampling. Excellent performance is demonstrated across multiple unsupe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2010

ISSN: 0021-9045

DOI: 10.1016/j.jat.2010.05.004